In recent years, III-Nitride-based micro light-emitting diodes (micro-LEDs) have emerged in many fields and gained more attention. However, fabricating high-efficiency micro-LEDs still remains a challenge due to the presence of sidewall damage. In this study, a GaN-based single blue micro-LED with a full-M-sided hexagonal mesa was prepared. The mesa has a circumradius of 10 µm and was treated with a tetramethylammonium hydroxide (TMAH) solution. Experimental results show that the sidewall defects introduced by dry etching damage act as non-radiative recombination centers and greatly impair the performance of the device. By constructing a full-M-sided hexagonal structure and soaking in a TMAH solution, the etching damage on the sidewall can be eliminated to the greatest extent, thereby reducing sidewall defects. In consequence, the peak EQE of the devices treated with the TMAH solution exceeded 10% at low current density, an increase of 9% compared with the untreated samples. This work provides, to our knowledge, a new approach to improving the efficiency of GaN-based micro-LEDs.