Abstract

Organic light-emitting transistors (OLETs), a kind of highly integrated and minimized optoelectronic device, demonstrate great potential applications in various fields. The construction of high-performance OLETs requires the integration of high charge carrier mobility, strong emission, and high triplet exciton utilization efficiency in the active layer. However, it remains a significant long-term challenge, especially for single component active layer OLETs. Herein, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated. By incorporating a highly emissive guest into the DPA host system, an obvious increase in photoluminescence efficiency along with exciton utilization efficiency results in an obvious enhancement of external quantum efficiency of 7.2times for OLETs compared to the non-doped devices. Moreover, well-tunable multi-color electroluminescence, especially white emission with Commission Internationale del'Eclairage of (0.31, 0.35), from OLETs is also achieved by modulating the doping concentration with a controlled energy transfer process. This work opens a new avenue for integrating strong emission and efficient exciton utilization in high-mobility organic semiconductors for high-performance OLETs and advancing their related functional device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.