Abstract
AbstractPlasmonic perovskite solar cells (PSCs) using core−shell type plasmonic particles are designed, which possess the plasmon resonance in the near‐infrared range. This can selectively strengthen the interaction of the perovskite layer with low‐energy photons. The mesoporous PSCs employing the plasmonic particles have delivered a 10%–15% enhancement of external quantum efficiency in the plasmonic resonance range. This surface‐plasmonic effect has been analyzed using complementary techniques, including selective wavelength excitation and time‐dependent photoluminescence. It is shown that the metal‐based core−shell‐type plasmonic structures in PSCs optimize the scattering and absorption of incident light and the dynamics of photogenerated carriers. Furthermore, both optical and electronic effects increase the power conversion efficiency of PSCs from 17.49% to 19.88%, paving a way toward controlling the thickness of the photoactive layer for advanced devices such as tandem solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.