The development of dual-mode strategies with superior sensitivity and accuracy have garnered increasing attention for researchers in Aflatoxin B1 (AFB1) analysis. Herein, a colorimetric-electrochemiluminescence (ECL) dual-mode biosensor was constructed for onsite and ultrasensitive determination of AFB1. The multi-wall carbon nanotubes (MWCNTs) were integrated with the ZnO metal organic frameworks (MOFs) to accelerate the electron transfer and boost the ECL intensity of g-C3N4 nanoemitters. Through the aptamer-based DNA sandwich assay, the CuO@CuPt nanocomposites were introduced onto the electrode and acted as the dual functional signal nanoprobes. Due to the good spectrum overlap between the CuO@CuPt nanoprobes and g-C3N4 nanosheets, ECL signal could be efficiently quenched. Additionally, the CuO@CuPt nanoprobes show superior catalytic properties towards the TMB and H2O2 colorimetric reactions, and an obvious color alteration from colorless to blue can be observed using the smartphone. Under optimized conditions, a sensitive and accurate dual-mode analysis of the AFB1 was accomplished with the colorimetric detection limit of 3.26 fg/mL and ECL detection limit of 0.971 fg/mL (S/N = 3). This study combines innovative nanomaterial properties of ZnO@MWCNTs, g-C3N4 and CuO@CuPt for ultrasensitive dual-mode detection, which offers new opportunities for the innovative engineering of the dual-mode sensors and demonstrates significant potential in food safety analysis.