Given a Lipschitz domain $\Omega $ in ${\mathbb R} ^N $ and a nonnegative potential $V$ in $\Omega $ such that $V(x)\, d(x,\partial \Omega)^2$ is bounded in $\Omega $ we study the fine regularity of boundary points with respect to the Schr\"odinger operator $L_V:= \Delta -V$ in $\Omega $. Using potential theoretic methods, several conditions equivalent to the fine regularity of $z \in \partial \Omega $ are established. The main result is a simple (explicit if $\Omega $ is smooth) necessary and sufficient condition involving the size of $V$ for $z$ to be finely regular. An essential intermediate result consists in a majorization of $\int_A | {\frac {u} {d(.,\partial \Omega)}} | ^2\, dx$ for $u$ positive harmonic in $\Omega $ and $A \subset \Omega $. Conditions for almost everywhere regularity in a subset $A $ of $ \partial \Omega $ are also given as well as an extension of the main results to a notion of fine ${\mathcal L}_1 | {\mathcal L}_0$-regularity, if ${\mathcal L}_j={\mathcal L}-V_j$, $V_0,\, V_1$ being two potentials, with $V_0 \leq V_1$ and ${\mathcal L}$ a second order elliptic operator.
Read full abstract