Abstract

In this paper we study the L p boundary value problems for $${\mathcal{L}(u)=0}$$ in $${\mathbb{R}^{d+1}_+}$$ , where $${\mathcal{L}=-{\rm div} (A\nabla )}$$ is a second order elliptic operator with real and symmetric coefficients. Assume that A is periodic in x d+1 and satisfies some minimal smoothness condition in the x d+1 variable, we show that the L p Neumann and regularity problems are uniquely solvable for 1 < p < 2 + δ. We also present a new proof of Dahlberg’s theorem on the L p Dirichlet problem for 2 − δ < p < ∞ (Dahlberg’s original unpublished proof is given in the Appendix). As the periodic and smoothness conditions are imposed only on the x d+1 variable, these results extend directly from $${\mathbb{R}^{d+1}_+}$$ to regions above Lipschitz graphs. Consequently, by localization techniques, we obtain uniform L p estimates for the Dirichlet, Neumann and regularity problems on bounded Lipschitz domains for a family of second order elliptic operators arising in the theory of homogenization. The results on the Neumann and regularity problems are new even for smooth domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.