Abstract
We prove sharp stability estimates for the variation of the eigenvalues of non-negative self-adjoint elliptic operators of arbitrary even order upon variation of the open sets on which they are defined. These estimates are expressed in terms of the Lebesgue measure of the symmetric difference of the open sets. Both Dirichlet and Neumann boundary conditions are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.