Abstract

The present paper discusses relations between regularity, Dirichlet, and Neumann problems. We investigate the boundary problems for block operators and prove, in particular, that the solvability of the regularity problem does not imply the solvability of the dual Dirichlet problem for general elliptic operators with complex bounded measurable coefficients. This is strikingly different from the case of real operators, for which such an implication was established in 1993 by C. Kenig, J. Pipher [Invent. Math. 113 (3) (1993) 447–509] and since then has served as an integral part of many results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.