The paper presents an analysis of the application of an air-to-water electric compressor heat pump (AWHP) for the recovery of waste heat from the exhaust air in a typical multifamily residential building and the use of this heat for space heating, as well as the impact of this solution on the building energy performance (the PPR index). Simulations were performed in TRNSYS for five locations in Poland (Koszalin, Wrocław, Lublin, Białystok, Suwałki), for various heating system parameters (80/60 °C, 75/65 °C, 70/50 °C, 55/45 °C, 35/28 °C), for various temperature limitations of heat pump operation. It was shown that the analyzed system has great potential from an energy and environmental point of view. It can provide significant benefits in terms of the energy performance of the building, depending on the system parameters. The results show that the most energy-efficient system is the one with the lowest heating system temperatures. Moreover, implementing a temperature limitation on the heat pump operation improves its efficiency, but the higher the design parameters of the heating installation and the lower the limitation, the lower the heat pump contribution, and the higher the SCOP and the PPR. The energy effect is also influenced by location, but its scale depends on the parameters of the heating system and the temperature limitation of the heat pump’s operation. It is more significant for lower heating system parameters. This system enables the possibility of further reducing the demand for nonrenewable primary energy by powering the heat pump with photovoltaic cells.
Read full abstract