International Journal of Computational Engineering ScienceVol. 05, No. 03, pp. 619-638 (2004) No AccessHIGH-RESOLUTION SIMULATION OF THE ELASTIC-PLASTIC WAVE EQUATION IN THREE SPACE DIMENSIONSGUIDO GIESEGUIDO GIESESeminar for Applied Mathematics, ETH Zurich, ETH Zentrum, 8004-Zurich, Switzerland Search for more papers by this author https://doi.org/10.1142/S1465876304002599Cited by:0 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractIn this paper we present an efficient numerical one-step method of high order in space and time for solving the elastic-plastic wave equation in three space dimensions. The basic idea is to decompose the hyperbolic PDE into advection equations, which can be solved numerically, Furthermore, the occurrence of plasticity makes it necessary to solve an ODE for the stress-strain relationship at every point.Keywords:Hyperbolic conservation lawselastic-plastic wave equationhigh order finite-volume schemes References P. Colella, SIAM J. Comp. Phys. 87, 171 (1990). Crossref, Google Scholar M. Fey , R. Jeltsch and A.-T. Morel , Numerical Analysis 1995 , eds. D. Griffiths and G. A. Watson ( Longman , 1996 ) . Google Scholar D. Kröner , Numerical Schemes for Conservation Laws ( Wiley Teubner , 1997 ) . Google Scholar R. J. LeVeque , Numerical Methods for Conservation Laws , Lectures in Mathematics ( Birkhäuser , 1992 ) . Crossref, Google Scholar D. Serre , Systems of conservation laws ( Cambridge University Press , 1999 ) . Crossref, Google Scholar X. Lin , Numerical Computation of stress waves in solids ( Akademie Verlag , 1996 ) . Google ScholarX. Lin and J. Ballmann, Quart. Appl. Math LIII(2), 383 (1995). Google ScholarX. Lin and J. Ballmann, Wave Motion 21, 115 (1995). Crossref, Google ScholarX. Lin and J. Ballmann, ZAMM 75, 267 (1995). Google ScholarX. Lin and J. Ballmann, Nonlinear Waves in Solids, eds. J. L. Wegner and F. R. Norwood (ASME book, 1995) pp. 155–160. Google ScholarX. Lin and J. Ballmann, Journal de Physique III(4), (1994). Google ScholarM. Fey, Journal of Computational Physics 143, 159 (1998). Crossref, Google ScholarM. Fey, Journal of Computational Physics 143, 181 (1998). Crossref, Google Scholar M. Fey, R. Jeltsch, J. Maurer, A.-T. Morel. The method of transport for nonlinear systems of hyperbolic conservation laws in several space dimensions, Proceedings of the Conference on Numerical Analysis, Zeist, 1996 . Google Scholar L. Prandtl. Proceedings of the First International Congress for Applied Mechanics. Delft, 1924, p. 43 . Google Scholar P. L. Gould , Introduction to Linear Elasticity ( Springer Verlag , 1983 ) . Crossref, Google Scholar J. Lubliner , Plasticity Theory ( Macmillan Publishing Company, cop. , 1990 ) . Google Scholar W. K. Nowacki , Stress waves in non-elastic solids ( Pergamon Press , Oxford , 1978 ) . Google Scholar K. W. Morton and R. D. Richtmyer , Difference Methods for Initial-Value Problems ( Krieger Publishing Company , 1995 ) . Google Scholar FiguresReferencesRelatedDetails Recommended Vol. 05, No. 03 Metrics History KeywordsHyperbolic conservation lawselastic-plastic wave equationhigh order finite-volume schemesPDF download
Read full abstract