Abstract

The explosive molecular crystal cyclotetramethylene tetranitramine was studied in three orientations in a set of plate impact experiments; the orientations studied were {110}, {011}, and {010} in P21/n space group. The elastic–plastic shock response was measured using laser interferometry. The measured particle velocity profiles showed elastic precursor decay typical of a stress relaxing material. There is anisotropy in elastic shock strength and decay. The amount of precursor decay with propagation distance and stress relaxation behind the elastic shock varied among the orientations. The {010} orientation had larger elastic precursors than did the other two orientations; the {010} crystal does not have the regular plastic deformation mechanisms available to it. Elastic Hugoniots were obtained from the measurements. The inelastic deformation mechanisms may vary with orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.