As warmer and drier conditions associated with global warming are projected to increase in southern Europe, the Mediterranean countries are currently the most prone to wildfire danger. In the present study, we investigated the statistical relationship between drought and fire weather risks in the context of climate change using drought index and fire weather-related indicators. We focused on the vulnerable and long-suffering area of the Attica region using high-resolution gridded climate datasets. Concerning fire weather components and fire hazard days, the majority of Attica consistently produced values that were moderately to highly anti-correlated (−0.5 to −0.9). This suggests that drier circumstances raise the risk of fires. Additionally, it was shown that the spatial dependence of each variable on the 6-months scale Standardized Precipitation Evapotranspiration Index (SPEI6), varied based on the period and climate scenario. Under both scenarios, an increasing rate of change between the drought index and fire indicators was calculated over future periods versus the historical period. In the case of mean and 95th percentiles of FWI with SPEI6, abrupt changes in linear regression slope values were observed, shifting from lower in the past to higher values in the future periods. Finally, the fire indicators’ future projections demonstrated a tendency towards an increasing fire weather risk for the region’s non-urban (forested and agricultural) areas. This increase was evident from the probability distributions shifting to higher mean and even more extreme values in future periods and scenarios. The study demonstrated the region’s growing vulnerability to future fire incidents in the context of climate change.