This paper analyzes the impacts of single-charged-trap-induced random telegraph noise (RTN) on FinFET devices in tied- and independent-gate modes, 6T static random access memory (SRAM) cell stability, and several basic logic circuits. The dependence of RTN on trap location, EOT, and temperature is evaluated through 3-D atomistic TCAD simulation. It is observed that the charged trap located near the bottom of sidewall (gate) interface and in the middle region between the source and drain will result in the most significant impact. EOT scaling and higher operating temperature improve the immunity to RTN. RTN degradation in independent-gate mode and the dependence on the location of the trap and bias-dependent current-conduction path are analyzed. We show that the planar BULK device, with larger subthreshold swing ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$S.S.$</tex></formula> ) and comparable trap-induced <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$V_{T}$</tex></formula> shift, exhibits less nominal RTN degradation than FinFET for traps placed in the worst position. However, the larger variability and surface conduction characteristic of the planar BULK device lead to broader dispersion and larger worst case RTN degradation than the FinFET device with smaller variability and volume conduction. For traps randomly placed across the interface, similar RTN amplitude dispersions are observed for FinFET and planar BULK devices except in the vicinity of distribution tail due to the strong interaction between the charged trap and discrete random dopants in planar BULK devices. For 6T FinFET SRAM cell, the READ static noise margin of 64 possible combinations from trapping/detrapping in each cell transistor is examined. Because of reduced carriers with decreasing supply voltage <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(V_{\rm dd})$</tex></formula> , the importance of RTN on subthreshold cell stability increases. Moreover, the leakage and delay of FinFET inverters, two-way nand, and two-to-one multiplexer are investigated using 3-D TCAD mixed-mode simulations. The RTN is found to cause <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim$</tex></formula> 24%–27% and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\sim$</tex></formula> 13%–15% variations in leakage and delay at <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$V_{ \rm dd} = \hbox{0.4}\ \hbox{V}$</tex></formula> , respectively, for the logic circuits evaluated.