The influence of nonmagnetic impurity and spin-orbit scattering on the nuclear spin-lattice relaxation rate in strongly disordered superconductors is presented. Using Anderson's exact-eigenstate formalism, it is shown that there exist two effects of disorder onT1−1. Firstly, nonmagnetic impurity and spin-orbit scattering enhances the magnitude of the relaxation rate in the same manner as in the normal dirty metal due to the diffusive nature of quasiparticle motion. Secondly, the Hebel-Slichter peak becomes suppressed due to the disorder enhancement of the quasiparticle inelastic scattering rate due to phonon, Coulomb, and/or spin-fluctuation interactions. Comparison with the available experimental data is made.
Read full abstract