This letter presents a clear explanation of the electron emission mechanism of the high-resistivity N-doped diamond cathode. Due to the very low barrier to emission of electrons from the N-doped diamond conduction band into vacuum, electrons in the conduction band of diamond can establish an appreciable leakage current at very low anode voltage. When such a current starts to flow, there is a field which is developed across the diamond bulk. This field is observed as an increase in the electric field at the back contact, causing the injected tunneling current increases exponentially. This process leads to the low threshold emission from the high resistivity N-doped diamond cathode.
Read full abstract