Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion-antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.
Read full abstract