Aim:In a Nuclear Medicine department, the risk of external and internal contamination in radiation workers is much higher than in other medical radiation facilities. The risk associated with both types of contaminations should be quantified to estimate the radiation dose received by the personal. Here, we designed an in vitro model to see the impact of internal and external contamination of F-18 and Technetium-99 m (Tc-99 m) on DNA damages.Methodology:Chinese hamster lung fibroblast V79 was used for all of the experiments. Irradiation was performed internally and externally (scenarios activity is mixed with the cell line [Internal] and activity kept at 1 cm distance from cell line [external]) using two different diagnostic radioactive sources (Tc-99 m and F-18) of known quantity 37 MBq. Total cumulated activity (MBq-min) was calculated up to one half-life of sources for both internal and external setups. An alkaline single gel electrophoresis technique (comet assay) was used for DNA damage analysis. Olive tail moment (OTM) was used to characterize DNA damage.Results:We have not observed any significant difference (P > 0.05) in OTM between internal and external irradiation for cumulated activity presented before one half-life of both diagnostic isotopes. However, a significant difference in OTM was noted between internal and external irradiation for cumulated activity presented at one half-life of radioactive sources (P < 0.05). DNA damage with internal exposure was found to be 17.28% higher for F-18 and 23% higher for Tc-99 m than external exposure at one half-life of radioactive sources. Overall, we noted greater DNA damage in F-18 as compared to Tc-99 m.Conclusions:Our in vitro study practically demonstrated that internal contamination is more hazardous than external exposure.
Read full abstract