Abstract
Bisphenol A polycarbonate (BPA-PC) is a kind of widely used engineering plastics. However, excessive usage causes the production of plastic wastes, following property changes of polymers and high risks of released chemicals during outdoor weathering. In this study, we systematically investigated the photoaging behavior of PC microplastics (MPs) in aquatic environment and evaluated the potential risk of released intermediates. Light irradiation along with mechanical abrasion facilitated the fragmentation of PC MPs and stimulated photooxidative modification during 640 h of ultraviolet (UV) exposure. Continuous degradation of the polymer was accompanied with dramatic decline of molecular weight. Also, BPA was released from irradiated PC MPs with a trend of an initial rapid increase followed by a decrease versus the irradiation time, and the maximum concentration of dropped BPA was detected up to 652.80 ± 72.89 μg/g (43.39% and 56.61% respectively in particles and leachates). However, the releasing amount of BPA in the leachate merely occupied 2.7% of the total organic carbon (TOC) leached out, suggesting that a great number of unknown organic products were produced other than BPA. Liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis showed that these organic compounds forming MPs-derived dissolved organic matter (MPs DOM) were partly composed of 4,4’-dihydroxybenzophenone (DHB), p-hydroxybenzoic acid (p-HBA) and methyparaben (MeP), which would also contribute to the estrogenic activity. The degradation pathway of PC MPs was elaborated with the photolysis process of PC dimer and BPA, and the remarkable photoaging of PC MPs was mainly dominated by the generated reactive oxygen species (ROS). The findings of this study indicated that understanding the photoaging process of PC MPs was vital to evaluate their integral cumulative estrogenic activity in aquatic environment, and further highlighted the notable possible risks of plastic leachates to exposed biota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.