Developing Field Programmable Gate Array (FPGA)-based applications is typically a slow and multi-skilled task. Research in tools to support application development has gradually reached a higher level. This paper describes an approach which aims to further raise the level at which an application developer works in developing FPGA-based implementations of image and video processing applications. The starting concept is a system of streamed soft coprocessors. We present a set of soft coprocessors which implement some of the key abstractions of Image Algebra. Our soft coprocessors are designed for easy chaining, and allow users to describe their application as a dataflow graph. A prototype implementation of a development environment, called SCoPeS, is presented. An application can be modified even during execution without requiring re-synthesis. The paper concludes with performance and resource utilization results for different implementations of a sample algorithm. We conclude that the soft coprocessor approach has the potential to deliver better performance than the soft processor approach, and can improve programmability over dedicated HDL cores for domain-specific applications while achieving competitive real time performance and utilization.
Read full abstract