Aluminum (Al), the most abundant metallic element on the earth crust, has been reckoned as a promising battery material for its the highest theoretical volume capacity (8046 mAh cm−3). Being rechargeable in ionic liquid electrolytes, however, the Al anode and battery case suffer from corrosion. On the other hand, Al is irreversible in aqueous electrolyte with severe hydrogen evolution reaction. Here, we demonstrate a water-in-salt aluminum ion electrolyte (WISE) based on Al and lithium salts to tackle the above challenges. In the WISE system, water molecules can be confined within the Li+ solvation structures. This diminished Al3+-H2O interaction essentially eliminates the hydrolysis effect, effectively protecting Al anode from corrosion. Therefore, long-term Al plating/stripping can be realized. Furthermore, two types of high-performance full batteries have been demonstrated using copper hexacyanoferrate (CuHCF, a Prussian Blue Analogues) and LiNi0.8Co0.1Mn0.1O2 (NCM) as cathodes. The reversibility of Al anode laid the foundation for low cost rechargeable batteries suffering for large-scale energy storage.Broader context: Al batteries are expected to become a safe and sustainable alternative to lithium batteries. For decades, chase for a feasible Al secondary battery has not been successful. The key challenge is to find suitable cathode and electrolyte materials, together with which Al anode battery can function reversibly. Currently, fatal drawbacks have impeded the practical application of Al metal batteries (AMBs), such as sustained corrosion of Al anode and battery case in ionic liquid electrolytes, irreversibility issues as well as severe hydrogen evolution reaction during cycling in aqueous electrolyte. Therefore, electrolyte and their electrochemical kinetics play a vital role in the performance and environmental operating limitations of high-energy Al metal batteries. In this work, we demonstrate a nearly neutral Al ion water-in-salt electrolyte (WISE) to tackle the above challenges. The WISE shows excellent stability in the open atmosphere. The distinct solvation-sheath structure of Al3+ in the WISE system would protect Al metal anodes from corrosion and eliminate hydrogen evolution reaction effectively, further promoting the reversibility of Al metal anodes with dendrite-free morphology. Moreover, such a WISE exhibits superior compatibility with LiNi0.3Co0.3Mn0.3O2 (NCM) and copper hexacyanoferrate (CuHCF) cathodes and long-term stabilities with high coulombic efficiency (CE) can be attained for full batteries with the WISE. The approach in this study can furnish an opportunity to develop reversible AMBs and lay the foundation for other potential multivalent-metal-based secondary batteries suffering from interface passivation and poor reversibility, which suggest the promise of multivalent metal batteries and their applications in large-scale energy storage.
Read full abstract