Abstract

Salinity is crucial for understanding the environmental and ecological processes in estuarine and coastal sediments. In situ measurements in sediments are scarce due to the low water content and particulate adsorption. Here, a new potentiometric sensor principle is proposed for the real-time in situ measurement of salinity in sediments. The sensor system is based on paper sampling and two all-solid electrodes, a cation-selective electrode (copper hexacyanoferrate, CuHCF) and an anion-selective electrode (Ag/AgCl). The spontaneous aqueous electrolyte extraction and redox reaction can produce a Nernstian response on both electrodes that is directly related to salinity. This potentiometric sensor allows for salinity acquisition in a wide salinity range (1-50 ppt), with high resolution (<1 ppt), and at a low water content (<30%), and it has been applied for the in situ measurement of salinity and the interpretation of cycling processes of metals in estuarine and coastal sediments. Moreover, the sensor coupled to a wireless monitoring system exhibited remote-sensing capability and successfully captured the salinity dynamic processes of the overlying water and pore water during the tidal period. This sensor with its low cost, versatility, and applicability represents a valuable tool to advance the comprehension of salinity and the salinity-driven dissolved-matter variations in estuarine and coastal sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call