Abstract

Denitrification, anammox, and DNRA are three important nitrogen (N) reduction pathways in estuarine sediments. Although salinity is an important variables controlling microbial growth and activities, knowledge about the effects of changing salinity on those three processes in estuarine and coastal wetland sediments are not well understood. Herein, we performed a 60-d microcosms experiment with different salinities (0, 5, 15, 25 and 35 ‰) to explore the vital role of salinity in controlling N-loss and N retention in estuarine wetland sediments. The results showed that sediment organic matter, sulfide, and nitrate (NO3−) were profoundly decreased with increasing salinity, while sediment ammonium (NH4+) and ferrous (Fe2+) varied in reverse patterns. Meanwhile, N-loss and N retention rates and associated gene abundances were differentially inhibited with increasing salinity, while the contributions of denitrification, anammox, and DNRA to total nitrate reduction were apparently unaffected. Moreover, denitrification rate was the most sensitive to salinity, and then followed by DNRA, while anammox was the weakest among these three processes. In other words, anammox bacteria showed a wide range of salinity tolerance, while both denitrification and DNRA reflected a relatively limited dynamic range of it. Our findings could provide insights into temporal interactive effects of salinity on sediment physico-chemical properties, N reduction rates and associated gene abundances. Our findings can improve understanding of the effects of saltwater incursion on the N fate and N balance in estuarine and coastal sediments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.