Abstract

As a unique class of dynamic nanostructures, biomimetic DNA walking machines that exhibit geometrical complexity and nanometre precision have gained great success in photoelectrochemical (PEC) bioanalysis. Despite certain achievements, the slow reaction kinetics and low processivity severely restrict the amplification efficiency of the DNA walker-mediated biosensors. Herein, by taking advantage of efficient DNA rolling machines, a three-dimensional (3D) DNA nanomachine-mediated paper-based PEC device for speedy ultrasensitive detection of miR-486–5p was successfully constructed. To achieve it, a novel In2S3/SnS2 sensitized heterojunction was firstly in-situ grown on the Au-modified paper fibers and implemented as the photoanode with effective separation of photogenerated carriers to achieve an enhanced initial photocurrent. Subsequently, the copper hexacyanoferrate(II)-modified CuO nanosphere was introduced as a multifunctional signal regulator via the competitive capture of electron donors and photon energy with the photoelectric layer for efficiently quenching the PEC signal. With the introduction of targets, the DNAzyme-driven DNA nanomachine with editable motion modes was gradually activated and it could continuously cleave the tracks DNA labeled quenching probes, finally achieving the recovery of PEC signal. As a proof of concept, the elaborated paper-based PEC device presented a wide linear range from 0.1 fM to 100 pM and a detection limit of 35 aM for miR-486–5p bioassay. This work provides an innovative insight to the exploitation of DNA nanobiotechnology and nucleic acid signal amplification strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call