Peroxy radicals are key intermediates in many atmospheric processes. Reactions between such radicals are of particular interest as they can lead to accretion products capable of participating in new particle formation (NPF). These reactions proceed through a tetroxide intermediate, which then decomposes to a complex of two alkoxy radicals and O2, with spin conservation dictating that the complex must be formed in the triplet state. The alkoxy complex can follow different pathways e.g. hydrogen(H)-shift reactions, dissociation reactions etc., but the details of the full processes are not yet fully understood. This paper establishes the microscopic mechanisms of the H-shift and other associated pathways in the context of a self-reaction between methoxy radicals, with focus on the roles of the singlet and triplet states involved. Dynamics in time is explored by two methods: the multireference XMS-CASPT2 and very recently developed mixed reference spin-flip TDDFT (MRSF-TDDFT). The metadynamics method is used to compute energetics. The XMS-CASPT2 and the MRSF-TDDFT dynamics simulations yield similar results. This would be very encouraging for future simulations for large radicals, since MRSF-TDDFT simulations enjoy the advantages of linear response theory. Our calculations demonstrate that the reaction between methoxy radicals, though initiated on the triplet state, leads to products predominantly on the singlet surface, following efficient intersystem crossing (ISC). The computed branching ratio between H-shift and dissociation channels agrees well with experiment.
Read full abstract