Abstract

f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call