Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.