Abstract

Global warming significantly affects forest ecosystems in the Northern Hemisphere’s mid-to-high latitudes, altering tree growth, productivity, and spatial distribution. Additionally, spatial and temporal heterogeneity exists in the responses of different tree species to climate change. This research focuses on two key species in China’s Greater Khingan Range: Larix gmelinii (Rupr.) Kuzen. (Pinaceae) and Quercus mongolica Fisch. ex Ledeb. (Fagaceae). We utilized a Maxent model optimized by the kuenm R package to predict the species’ potential habitats under various future climate scenarios (2050s and 2070s) considering three distinct Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5, and SSP5-8.5. We analyzed 313 distribution records and 15 environmental variables and employed geospatial analysis to assess habitat requirements and migration strategies. The Maxent model demonstrated high predictive accuracy, with Area Under the Curve (AUC) values of 0.921 for Quercus mongolica and 0.985 for Larix gmelinii. The high accuracy was achieved by adjusting the regularization multipliers and feature combinations. Key factors influencing the habitat of Larix gmelinii included the mean temperature of the coldest season (BIO11), mean temperature of the warmest season (BIO10), and precipitation of the driest quarter (BIO17). Conversely, Quercus mongolica’s habitat suitability was largely affected by annual mean temperature (BIO1), elevation, and annual precipitation (BIO12). These results indicate divergent adaptive responses to climate change. Quercus mongolica’s habitable area generally increased in all scenarios, especially under SSP5-8.5, whereas Larix gmelinii experienced more complex habitat changes. Both species’ distribution centroids are expected to shift northwestward. Our study provides insights into the divergent responses of coniferous and broadleaf species in the Greater Khingan Range to climate change, contributing scientific information vital to conserving and managing the area’s forest ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call