Abstract

Understanding the density-dependent impacts of an invasive predator is integral for predicting potential consequences for prey populations. Functional response experiments are used to assess the rate of prey consumption and a predator’s ability to search for and consume prey at different resource densities. However, results can be highly context-dependent, limiting their extrapolation to natural ecosystems. Here, we examined how simulated habitat complexity, through the addition of substrate in which prey can escape predation, affects the functional response of invasive European green crabs (Carcinus maenas) foraging on two different bivalve species. Green crabs feeding on varnish clams (Nuttallia obscurata) shifted from a Type II hyperbolic functional response in the absence of substrate to density-independent consumption when prey could bury. Green crabs ate few Japanese littleneck clams (Venerupis philippinarum) under all densities, such that no functional response curve of any type could be produced and their total consumption was always density independent. However, the probability of at least one Japanese littleneck clam being consumed increased significantly with initial clam density and crab claw size across all treatments. At mean crab claw size and compared to trials without substrate, the proportion of varnish clams consumed were 4.2 times smaller when substrate was present, but substrate had a negligible effect (1.2 times) on Japanese littlenecks. The proportion of varnish clams consumed increased with crab claw size and were higher across both substrate conditions than the proportion of Japanese littlenecks consumed; however, the proportion of Japanese littleneck clams consumed increased faster with claw size than that of varnish clams. Our results suggest that including environmental features and variation in prey species can influence the density-dependent foraging described by functional response experiments. Incorporating replicable features of the natural environment into functional response experiments is imperative to make more accurate predictions about the impact of invasive predators on prey populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call