To assess the fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ultratranslucent multilayered zirconia (5Y-YZP) veneers with varying facial thickness. Sixty translucent zirconia veneers were designed and milled using a chairside CAD/CAM system for maxillary central incisors. The butt joint incisal veneer tooth preparations consisted of 1.00 mm incisal reduction, 0.40 mm chamfer margin, and three different facial reductions; 0.50, 0.75, and 1 mm, respectively. The ceramic veneers were cemented to printed resin dies and subjected to thermal cycling. Subsequently, the restorations were loaded with compressive loading force, and fracture occurrences were recorded. Scanning electron microscope (SEM) images of the fractured specimens were captured. The fracture resistance varied among the veneers with different facial thicknesses. Ultratranslucent zirconia veneers with a facial thickness of 1.00 mm exhibited the highest fracture resistance values (742.15 N), followed by those with 0.75 mm facial thickness (673 N). Minimally invasive veneers with 0.50 mm thickness displayed similar fracture resistance as thicker veneers with 0.75 mm. However, veneers with 1.00 mm thickness displayed the highest values. SEM fracture patterns for 0.50 and 0.75 mm display similar and fewer crack lines than 1.00 mm veneers. RESEARCH HIGHLIGHTS: Minimally invasive zirconia veneers exhibit similar fracture resistance to thicker veneers.