Abstract

The aim of this investigation was to compare the fracture resistance of chairside computer-aided design and computer-aided manufacturing (CAD/CAM) lithium disilicate-reinforced ceramic occlusal veneers with and without margin and traditional full coverage premolar crowns. A total of 60 chairside CAD/CAM lithium disilicate-reinforced ceramic (Amber Mill, Hass Bio) restorations were designed and fabricated with a chairside CAD/CAM system (CEREC Dentsply Sirona). The restorations were divided into three groups (n=20): 1) occlusal veneer with 1.0-mm uniform occlusal thickness and with chamfer margin; 2) occlusal veneer with 1.0-mm uniform occlusal thickness and without margin; and 3) full coverage crown with uniform occlusal thickness and gingival margin. Occlusal veneers and crowns were cemented with dual cured resin luting cement (Multilink, Ivoclar Vivadent) to printed resin dies, load cycled (5 million load cycles at 1 Hz with 275 N force), and then loaded until fracture. Load at break (LB) and peak load (PL) until fracture were recorded. Scanning electron microscope images of the tested restorations on the abutments were obtained. Fracture strengths were different depending on the design of the restoration. There was no significant difference in fracture strength between the two types of occlusal veneer (LB: 1132.45 N; PL: 1143.30 N for veneers with margin; LB: 1149.25 N; PL: 1219.05 N for veneers without margin). Full coverage crowns showed the lowest fracture resistance (LB: 936.26 N, PL: 976.42 N), which was significantly lower than both designs of occlusal veneer. The fracture resistance of the CAD/CAM lithium disilicate-reinforced ceramic restorations was influenced by the design. Occlusal veneers with and without margin displayed higher fracture resistance than traditional crowns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call