Abstract

ObjectiveThis investigation determined the internal precision of one-piece cross-arch yttria partially stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic fabricated from two digital systems (Trios-3 and CS-3500) compared to traditional metal alloy casting.Materials and methodsA metal model consisting of four abutments (two canine and two molar) was used for one-piece cross-arch reconstruction. The metal abutments were computerized, prepared in a cylinder form possessing 5° taper and chamfer margin. Two digital approaches of computer-aided design and computer-aided manufacturing were used to fabricate one-piece cross-arch Y-TZP prostheses. The traditional lost wax technique was used to fabricate conventional cast prostheses with nonnoble metal alloys. Ten prostheses were constructed from each system. The preciseness of the prosthesis was evaluated at 22 positions for each abutment using a digital stereomicroscope. Analysis of variance (ANOVA) and Tukey’s method were determined for all pairwise differences at the 95% CI.ResultsThe means and SDs of internal accuracy of prostheses constructed from the traditional cast technique, Trios-3, and CS-3500 were 75.15±13.46 μm, 78.55±14.30 μm, and 82.43±16.32 μm, respectively. ANOVA revealed statistical significance for the internal accuracy of prostheses between the different techniques at different positions of each abutment. Preciseness of the Y-TZP prosthesis constructed from Trios-3 illustrated significantly better internal fit than that constructed from CS-3500 (p<0.05). Tukey multiple comparisons revealed that the Y-TZP prosthesis constructed from both digital systems displayed significantly less internal fit than the traditionally fabricated prosthesis (p<0.05).ConclusionThe one-piece cross-arch Y-TZP prosthesis constructed from Trios-3 demonstrated superior internal accuracy than that from CS-3500, but both slightly lower in accuracy than the traditional cast metal prosthesis. Nevertheless, the internal discrepancies of the Y-TZP prosthesis fabricated by both digital techniques were not beyond the range of clinical prestige and were convincingly precise to be recommended for one-piece cross-arch extensive reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.