Developing thermal storage materials is crucial for the efficient recovery of thermal energy. Salt-based phase-change materials have been widely studied. Despite their high thermal storage density and low cost, they still face issues such as low thermal conductivity and easy leaks. Therefore, a new type of NaCl-Al2O3@SiC@Al2O3 macrocapsule was developed to address these drawbacks, and it exhibited excellent rapid heat storage and release capabilities and was extremely stable, significantly reducing the risk of leakage at high temperatures for industrial waste heat recovery and in concentrated solar power systems above 800 °C. Thermal storage macrocapsules consisted of a double-layer encapsulation of silicon carbide and alumina and a self-standing core of NaCl-Al2O3. After enduring over 1000 h at a high temperature of 850 °C, the encapsulated phase-change material exhibited an extremely low weight loss rate of less than 5% compared with NaCl@Al2O3 and NaCl-Al2O3@Al2O3 macrocapsules, for which the weight loss rate was reduced by 25% and 10%, respectively, proving their excellent leakage prevention. The SiC powder layer, serving as an intermediate coating, further prevented leakage, while the use of Al2O3 ceramics for encapsulation enhanced the overall mechanical strength. It was innovatively discovered that the Al2O3 particles formed a network structure around the molten NaCl, playing an important role in maintaining the shape and preventing leakage of the composite thermal storage phase-change material. Furthermore, the addition of Al2O3 significantly enhanced the rapid heat storage and release rate of NaCl-Al2O3 compared to pure NaCl. This encapsulated phase-change material demonstrated outstanding durability and rapid heat storage and release performance, offering an innovative approach to the application of salt phase-change materials in the field of high temperature rapid heat storage and release and encapsulating NaCl as a high-temperature thermal storage material in a packed bed system. Compared with conventional salt-based phase-change materials, the developed product is expected to significantly improve the reliability and thermal efficiency of thermal storage systems.