AbstractCreep damage assessment is crucial for ensuring the long‐term reliability of key components operating at high temperatures. However, the existing studies on creep damage are mainly focused on constant loading conditions, while the effect of cyclic loading, which is a common loading mode in practice, remains unclear. In this paper, a series of stress‐controlled cyclic creep tests on the Inconel 718 superalloy were performed to investigate the influence of cyclic loading on creep damage evolution. The ex‐situ microstructural analyses, including fracture surface observations and EBSD measurements, were conducted to reveal the damage mechanisms under cyclic creep conditions. Furthermore, a cavity nucleation and growth model that accounts for the additional cavity closure was developed for the healing effect of cyclic creep damage evolution. The prediction results were consistent with the experimental data of cavity nucleation life and experimental life within a factor of 2.
Read full abstract