Abstract
In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin’s incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571–722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin’s law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have