Abstract

In this work, we attempted to describe the evolution of damage in rubber-like materials due to the Mullins effect and the cavity growth process. To this end we introduced two distinct internal variables into the constitutive laws; the first one essentially describes the Mullins damage and the second describes the cavity growth. The Mullins effect was considered as a continuous type of damage that can be modelled within the continuum damage theory. The cavity growth, being discontinuous at the microscopic scale, was also modelled by a continuous variable after a homogenization procedure. These analyses allow the establishment of a compressible constitutive law describing the strain-softening phenomena for rubber-like materials. In order to identify the material parameters and to verify the efficiency of the model, we carried out experimental studies involving uniaxial, biaxial, and hydrostatic tensions under monotonic and cyclic loading. Comparison between the model-predicted results and the experimental data shows that the present model can efficiently describe both the Mullins damage and the porosity evolution of rubber-like materials under triaxial monotonic or cyclic loading with a satisfactory accuracy. The proposed concept is simple and easy to apply to engineering calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call