Abstract
The Mullins effect represents a softening phenomenon observed in rubber-like materials and soft biological tissues. It is usually accompanied by many other inelastic effects like for example residual strain and induced anisotropy. In spite of the long term research and many material models proposed in literature, accurate modeling and prediction of this complex phenomenon still remain a challenging task.In this work, we present a novel approach using deep symbolic regression (DSR) to generate material models describing the Mullins effect in the context of nearly incompressible hyperelastic materials. The two step framework first identifies a strain energy function describing the primary loading. Subsequently, a damage function characterizing the softening behavior under cyclic loading is identified. The efficiency of the proposed approach is demonstrated through benchmark tests using the generalized the Mooney–Rivlin and the Ogden–Roxburgh model. The generalizability and robustness of the presented framework are thoroughly studied. In addition, the proposed methodology is extensively validated on a temperature-dependent data set, which demonstrates its versatile and reliable performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.