This experimental study explores the mitigation of membrane fouling in membrane bioreactors (MBRs) through the combined use of granular activated carbon (GAC) and powdered activated carbon (PAC). The research assesses the impact of these materials on the fouling resistance, critical flux, and permeate quality using various mixed liquor suspended solids concentrations and carbon dosages. The results indicate that the GAC-PAC combination significantly reduces the total filtration resistance, particularly the cake layer resistance, by 11.7% to 13.6% compared to setups without activated carbon or with the individual carbon types. The study also reveals that this combination decreased the fouling rate by 15% to 24% at critical flux steps, demonstrating substantial improvements in fouling mitigation and operational efficiency. Furthermore, the GAC-PAC combination, which produces an adsorption process, enhances the permeate quality, achieving the near-complete removal of organic matter, total nitrogen, and turbidity, with total phosphorus removal reaching 99%. These findings demonstrate that the combined use of GAC and PAC not only reduces membrane fouling but also improves the overall MBR performance, making it a viable strategy for enhancing the efficiency of wastewater treatment processes.