As the computational power of high-performance computing (HPC) facilities grows, so too does the feasibility of using first principle based simulation to study turbulent two-phase flows within complex pressurized water reactor (PWR) geometries. Direct numerical simulation (DNS), integrated with an interface capturing method, allows for the collection of high-fidelity numerical data using advanced analysis techniques. The presented research employs the massively parallel, finite-element based, unstructured mesh code, PHASTA, to simulate a set of two-phase bubbly flows through PWR subchannel geometries including auxiliary structures (spacer grids and mixing vanes). The main objective of the presented work is to analyze bubble dynamics and turbulence interactions at varying bubble concentrations to support the development of advanced two-phase flow closure models. Turbulent two-phase flows in PWR subchannels were simulated at hydraulic Reynolds numbers of 81,000 with bubble concentrations of 3%–15% by gas volume fraction (768–3928 resolved bubbles, respectively) and compared against a 1% void fraction case (262 bubbles) that had been previously simulated. The finite element mesh utilized for the study at higher bubble concentrations was composed of 1.55 billion elements, compared to the previous study which employed 1.11 billion elements, ensuring all turbulence scales and individual bubbles within the flow are fully resolved. For each case, the resolved initial bubble size was 0.65 mm in diameter (resolved with 25 grid points across the diameter). The simulations were analyzed to find flow features such as the mean velocity profile, bubble relative velocity and the effect of the bubbles on the turbulent conditions.
Read full abstract