Abstract

AbstractThe dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.