PurposeThe brake pipe system was an essential braking component of the railway freight trains, but the existing E-type sealing rings had problems such as insufficient low-temperature resistance, poor heat stability and short service life. To address these issues, low-phenyl silicone rubber was prepared and tested, and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approachThe low-temperature resistance and thermal stability of the prepared low-phenyl silicone rubber were studied using low-temperature tensile testing, differential scanning calorimetry, dynamic thermomechanical analysis and thermogravimetric analysis. The sealing performance of the low-phenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.FindingsThe prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability. According to the finite element analysis results, the finish of the flange sealing surface and groove outer edge should be ensured, and extrusion damage should be avoided. The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments. When the sealing effect was ensured, a small compression ratio should be selected, and rubbers with hardness and elasticity less affected by temperature should be selected. The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature (RT) and −50 °C.Originality/valueThe innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
Read full abstract