Abstract

Public transport is amongst critical infrastructures in modern cities, especially megacities, home to millions of people. The reliability of these systems is highly crucial for both citizens and service providers. If service providers overlook system reliability, a considerable amount of expenses will be wasted. Several factors such as vehicle failure, accident, lack of budget weather factors, and traffic congestion cause unreliability, among which vehicle failure plays a prominent role. The brake system is the most vulnerable and vital component of a public transportation bus. Brake reliability depends on driver’s expertise, component quality, passenger loading, line situation, etc. Driver’s expertise and components’ quality are the most important factors for brake system reliability. This study aims to implement a hybrid machine learning and optimization model to minimize the total investment and reliability-related costs in a bus rapid transit (BRT) system. A regression analysis method is proposed to capture the main attributes of a joint brake system, including the level of education, training, and drivers’ experience. The failure rate is modeled as a linear function of ETE and the quality of brake system subcomponents using a Lasso regression model. MILP optimization is then provided for optimizing the total expected costs for a bus rapid transit (BRT) system. Furthermore, a practical case is studied to investigate whether this optimization can reduce costs. The results confirm the efficiency of the hybrid optimization approach.

Highlights

  • Nowadays, cities are growing in size, and their populations are increasing rapidly

  • As citizens need to travel inside their cities more frequently, public transportation systems are getting ever-increasing importance in society

  • bus rapid transit (BRT) reliability studies are pivotal because an interruption in such systems would result in passenger dissatisfaction and stakeholders would have to deal with vast economic losses

Read more

Summary

Introduction

Cities are growing in size, and their populations are increasing rapidly. As citizens need to travel inside their cities more frequently, public transportation systems are getting ever-increasing importance in society.

Related Works
Proposed Methodology
Failure Rate Model
Section 4
Case Study
Results and Discussion
Summary of Notions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.