Automatic brain abnormality segmentation from magnetic resonance images is a key task that is performed by computer aided algorithm or manual extraction by a medical expert. The regions are often partitioned based on the similarities of intensities that persist in a particular region. MR brain image segmentation is a critical step that helps to identify the abnormal region. Accurate identification of this abnormal region helps the radiologist and surgeons in surgical process and research. Through this paper we present a hybrid approach of algorithms based on clustering approach like region and edge based algorithm involved in segmenting abnormal region from MR brain images. The method is an integration of region based (pillar K-means) and edge based (level set) segmentation algorithm that aims to segment the abnormal region precisely. Experimental results show that the proposed approach could attain segmentation efficiency of 89.2%, mitigating the segmentation errors that were prevalent with region or edge based algorithms.