Abstract

ABSTRACTFuzzy theory based intelligent techniques are widely preferred for medical applications because of high accuracy. Among the fuzzy based techniques, Fuzzy C‐Means (FCM) algorithm is popular than the other approaches due to the availability of expert knowledge. But, one of the hidden facts is that the computational complexity of the FCM algorithm is significantly high. Since medical applications need to be time effective, suitable modifications must be made in this algorithm for practical feasibility. In this study, necessary changes are included in the FCM approach to make the approach time effective without compromising the segmentation efficiency. An additional data reduction approach is performed in the conventional FCM to minimize the computational complexity and the convergence rate. A comparative analysis with the conventional FCM algorithm and the proposed Fast and Accurate FCM (FAFCM) is also given to show the superior nature of the proposed approach. These techniques are analyzed in terms of segmentation efficiency and convergence rate. Experimental results show promising results for the proposed approach. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 188–195, 2016

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.