Abstract

Accurate segmentation of isointense infant (~6 months of age) brain MRIs is of great importance, however, a very challenging task, due to extremely low tissue contrast caused by ongoing myelination processes. In this work, we propose a novel learning method based on Local AdapTivE and Sequential Training (LATEST) for segmentation. Specifically, random forest technique is employed to train a local classifier (a single decision tree) for each voxel in the common space based on the neighboring training samples from atlases. Then, for each given voxel, all trained nearby individual classifiers (decision trees) are grouped together to form a forest. Moreover, the estimated probabilities are further used as additional source images to train the next set of local classifiers for refining tissue classification. By iteratively training the subsequent classifiers based on the updated tissue probability maps, a sequence of local classifiers can be built for accurate tissue segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.