Abstract

Manual segmentation of Magnetic Resonance Images (MRI) is a time-consuming process, thus automatic segmentation of brain MR images has attracted more attention in recent years. In this paper, we introduce Dynamic Classifier Selection Markov Random Field (DCSMRF) algorithm for supervised segmentation of brain MR images into three main tissues such as White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF). DCSMRF combines a novel ensemble method with the Markov Random Field (MRF) algorithm and tries to obtain the advantages of both algorithms. For the ensemble part of DCSMRF, we propose an ensemble method called Dynamic Classifier System-Weighted Local Accuracy (DCS-WLA) which is a type of Combination of Multiple Classifier (CMC) algorithm. Later, the MRF algorithm is utilized for incorporating spatial, contextual and textural information in this paper. For the MRF section, an energy function based on the output of the DCS-WLA algorithm is proposed, then maximum value for Maximum A Posterior (MAP) criterion is searched to obtain optimal segmentation. The MRF algorithm applies similar to a post processing step in which only a subset of pixels is selected for optimization step. Hence, a vast amount of search space is pruned. Consequently, the computational burden of the proposed algorithm is more tolerable than the conventional MRF-based methods. Moreover, by employing ensemble algorithms, the accuracy and reliability of final results are enhanced compared to the individual methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call