We studied the effects of increasing the thickness of bimorph structures containing double layers of Pb(Zr,Ti)O3 (PZT) thin films. Thick PZT films allow high-voltage application (e.g. in terms of coercive electric field and breakdown voltage) and large generative force, which are effective in microelectromechanical systems (MEMS) applications. Improvement of the deposition conditions and electrode structures facilitates the fabrication of the thin-film PZT/PZT bimorph structure. The PZT/PZT bimorph with a total thickness of 5.8 µm, deposited using a radio-frequency (RF) magnetron sputtering system is much thicker than conventional bimorph structures. The characteristics of the two piezoelectric layers were similar to each other and revealed good electric and ferroelectric characteristics with a remanent polarization of 20 µC cm−2 and a coercive electric field of 50 kV cm−1. PZT/PZT bimorph cantilevers were fabricated in order to evaluate their characteristics for actuator applications. The residual stress of the bimorph cantilever was reduced by an annealing process. The vibration test on the fabricated bimorph cantilevers during electrical voltage application revealed a twice as large displacement as compared with a single layer actuation, and the piezoelectric coefficient value d31 was estimated to be −61 pm V−1, which is better than the value of conventional PZT/PZT bimorph cantilevers (−13 pm V−1). It was also shown that the influence of the temperature change is much less than that in unimorph structures with similar dimensions. The evaluated results demonstrate that the PZT/PZT bimorph structures are effective as MEMS devices.