Abstract

In this paper, we address the fabrication and characterization of bimorph structures with relatively thick double-layered Pb(Zr,Ti)O3 (PZT) thin films. The PZT/PZT layers are deposited by RF magnetron sputtering. Hysteresis loops of polarization and electrical field for the top and bottom PZT thin films revealed good ferroelectric characteristics with remanent polarization at approximately 20 µC/cm2 and a coersive electric field of about 100 kV/cm. The vibration tests of fabricated bimorph cantilevers during electrical voltage application revealed a twofold displacement compared with single layer driving, and the piezoelectric coefficient value d31 is estimated to be 13 pm/V. The residual stress difference between the top and bottom layers after the annealing process is calculated to be -0.32 MPa. For a further thickening of the bimorph structure, 6-µm-thick PZT/PZT is also sputtered. The thicker bimorph has a smaller residual stress difference, -30 MPa, between the two layers prepared without the annealing process. The evaluated results demonstrate that the PZT/PZT bimorph structures are applicable to micro-electromechanical systems (MEMS) devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.