Abstract

Piezoelectric structures are nowadays used in many different applications. A better understanding of the influence of material properties and geometrical design on the performance of these structures helps to develop piezoelectric structures specifically designed for their application. Different equivalent circuits have been introduced in the literature to investigate the behaviour of piezoelectric transducers. The model parameters are usually determined from measurements covering the characteristic frequencies of the piezoelectric transducer. This article introduces an analytical technique for calculating the mechanical and electrical equivalent system parameters and characteristic frequencies based on material properties and geometry for a cantilever bimorph structure. The model is validated by measurements using a cantilever bimorph and fits the experimental results better than previous models. The model gives a full set of piezoelectric transducer parameters and is therefore well suited for further theoretical investigations of piezoelectric transducers for different applications. The results also show that even small manufacturing tolerances have a considerable effect on the system parameters and characteristic frequencies. This might lead to intolerable deviations, especially in dynamic applications and should be avoided by careful design and production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.