In this paper, we consider a class of orientation-preserving Morse-Smale diffeomorphisms defined on an orientable surface. The papers by Bezdenezhnykh and Grines showed that such diffeomorphisms have a finite number of heteroclinic orbits. In addition, the classification problem for such diffeomorphisms is reduced to the problem of distinguishing orientable graphs with substitutions describing the geometry of a heteroclinic intersection. However, such graphs generally do not admit polynomial discriminating algorithms. This article proposes a new approach to the classification of these cascades. For this, each diffeomorphism under consideration is associated with a graph that allows the construction of an effective algorithm for determining whether graphs are isomorphic. We also identified a class of admissible graphs, each isomorphism class of which can be realized by a diffeomorphism of a surface with an orientable heteroclinic. The results obtained are directly related to the realization problem of homotopy classes of homeomorphisms on closed orientable surfaces. In particular, they give an approach to constructing a representative in each homotopy class of homeomorphisms of algebraically finite type according to the Nielsen classification, which is an open problem today.