AbstractThis study investigates boreal spring events of Pacific Meridional Mode (PMM) from 1950 to 2022, revealing that cold PMM is more effective in triggering subsequent La Niña compared to warm PMM's induction of following El Niño. This asymmetry stems from the varying origins and sub‐efficacies of PMM groups. The cold PMM is primarily initiated by pre‐existing La Niña, while the warm PMM is comparably activated by pre‐existing El Niño and internal atmospheric dynamics. PMMs initiated by pre‐existing El Niño or La Niña play a crucial role in determining the efficacies of PMMs in triggering subsequent El Niño‐Southern Oscillation (ENSO). The strong discharge of pre‐existing El Niño hampers warm PMM's induction of subsequent El Niño, whereas weak recharge from pre‐existing La Niña enhances the efficacy of cold PMM in inducing subsequent La Niña. Comprehending not only the PMM phase but also its origin is crucial for ENSO research and prediction.